
t AD—A075 S6l4 CARNEGIE—MELLON UNIV PITTSBURGH PA MANAGEMENT SCIENC—ETC FIG 12/2 

-

APPROACH TO MULTIST —ALLOCATION.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~NCLASSI!D :SR!!R
V NAGELH!.GLTHOMPSO NOOO1*S75!O!1

END

I. U
i 79

_______ ODO

II 



I 1111 10
__

______ 

__ ~~
2 S

I2 2

2 0

I liii’’ ~~L
I1.8

~~~~ AU O~ S~N~~~~$
~~~~~~~~~~~~~ ‘I,. TJ~~?



1EVEL~~2 $

A COST OPELATOR APPROAC H TO MULTISTAGE

L~XAT 1(1W-ALLOCAT I~~

Rob ert ~~~. Sa ge l h ’u t

and

G e r a l d  1. Thot~tpion

7. . t.. 1070

CameQie-Mellon University
flmul ~ UN, P1PIJSVWN~~ 1111$

GIADUATI $01001 OP ICIflT ~ M AOMMSTRAUON8 ~~ UAM L~~~~ ~~~LO~&

_ 
D D C



r’ ~~ W • P • • 16-79-80

Management Sciences Re search Report No. 1.40

A COST OPE RATOR APPROAC H TO MULTISTAGE

LOCAT IOW-ALL~~ ATl~~J

by

Robert V. Nag. Ihout

and

Gerald L. Thompson

J u l y ,  1979

A C S 3t~. Oo

NTIS I~A&L
L~~ TAJ

.lUStif~ catt.fl 
—

-

Av~fl~~111ty Cc~ei_~~
Ava11a~4/O4.

~~~ ~~~ si

A l
This report was prepared as part of th. act ivities of the M.nag...n t
Sciences Research Group , Carnegie-M ellon University, under Contract
~~OO14-7 5-C-062 1 NI 341-04 8 with the U . S. Office of Nava l Research.
Reproduction in whole or to part ts p.r~itt.d for any purpose of the
~• $  Gov.rrasnt.

Management Sc iences Research Group
Graduate School of Industria l Administration

Carneg ie-Mel lon University
Pittsburgh , Pennsylvania 15213 _____________________________

DaTI~~ImON STATE~~~IT A

~~ peb~~ rtLs~~~
D *  U~JI $sd

r
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



A COST OPERATOR APPROACH TO MULTISTAGE

LOCATIOt4-ALLOCAT lOti

by

Robert V. Nageihout and Gerald L. Thompson

‘

~Th. multistage factory-warehouse location -allocation probl em is to

dec ide on locations of warehouses and shipping amounts fro. the factories

throug h the wareh ouses t .’ meet custome r demand s in suc h a way that the

total fixed p lus variable costs are minimized . Capacity constraints at

factories and warehouses ar. also imposed .

We present a cost operator algor ithm for solving this problem . The

algorithm take s ~nt~~ account the network structure and the submodularity of

the obj.cttv. func t ion . Computational results with problems taken from the

Literatur. as v.11 as new problems are provided.
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1. Introduction

In this paper we present a cost operator algorithm for solving multistage

factory warehouse location-allocation problems. The decision variables cor-

respond to the war.hous. locations and the shipping amounts from the factories

through the warehouses and into the demand centers. The problem is to minimize

the total fixed costs of locating warehouses plus the total variable shipping

cost , subject to possible capacity restrictions at the factories and the ware-

houses , plus the demand requirements at the demand centers.

The al gorithm takes advantage of the network structure of the supp ly

and demand constraints and the submodularity of the objective function. We

use cost operators ~22J . to facilitate the movement up and down the search

tree . This greatly reduces the amount of t ime spent solving transportation

subproblems . which frequent ly comprises up to 907. of th. computational burden.

In Section ~ we give a problem formulation and we discus s some of the

more recent research related to the multistage location problem. In Section 3

we point out lover bounds and fathoming rules obtainable from submodular set

func tions. In Section . we transform the multistage location problem into a

transportation problem forma t , and we show how cost operators can be used to

generat. feasible solution.. Section 5 contains a description of the cost

operator branch and bound algorithm . In Section 6 we give an example , and

in Section 7 we provide extensive computationa l experienc, on problems from

the literature plus some multistage problems of our own.

2. Problem Formulation

We describe the location problem to be studied in this paper as well as

similar models which have been presented in the literature. We use the following

notation :

1~_~ F



T~
q • number of factories; I’ — ii ,... ,qj

4. • number of warehouses ; I • (q+l ,...,m1

r • number of demand centers

m • q • 4. • 1; n • 4.. + r + 1; .1’ • I, . . .I 4 .J ,  j  •

f
1 • f ixed cost ot opening warehouse I

~fac tory I to L11
warehouse j  j cJ

cost per distance
factory I to iiic • per untt of

U demand center j jcJshipping from

warehouse I to 1(1
demand center j $J

• capacity of factory i

S1 • capacity of warehouse I

• demand at location j

xi~ 
• amount shipped from location I to location j

• 
1 if warehouse i is open

I 0 otherwise

The multistage or intermediate location problem , which we will call

Problem P, can be formulated as:

Minimize 2(T) • c ,x + f y (1)
T~I i s I ’

~~T jci ’ -.J ~ 1~ itT ~

subject to

it!’ (2)
j cj ’ _ J  ~~ I

= x~ - < 0 itT (3)
j t., I

x ~ d jcJ (4)
i i i ’ ..T  I

1 ~-~~~ • -~~~~ _________________________________________



- E x~ .0  itT (5)
t hcl ’ ~ jcJ

-~ 0 ii!’ — I, jcJ ’ ~ J (6)

• ~~l itT (7)0 othe rwise

Constraints (2) and (3) ensure that the amount shipped out of a factory or a

warehouse should not exceed its capacity. Constraints (4) require that the

demand at eac h demand center be satisfied . Constraint s (5) are the standard

“conservation of flow” constraints which require that the amount shipped into

eac h warehouse equals the amount shipped out . Constraints (6) and (7) are the

nonnegativity and integra lity constraints respective ly. The objective in

problem P ii to minimize the total transportation costs from shipping p lus

the total fixed costs of opening warehouses, while satisf ying the customer

demand . W hen

d (8 )
j cJ  i

we say that warehouse t is capacttated since it cannot satisfy all of th.

demand by itself. Th. factories can also be either capacitated or uncapacitated

depending upon the siz, of A~. Not. that in the multistage formula tion when

I ’ • 0. the total warehouse capacity need not exceed the total demand since

units can also be shipped directl y fr om the factories to the demand centers.

A considerable ount of research has been performed on uncapacitated ,

capac itated , and mixed (partl y capac itated ) location problems . It seems that

each problem wh ich is studied , depending upon the objectiv , function acid the

capacity assumption , exh ibits Its own characteristics and yields a different

algorithmic approach. Thus the literature on the many different location

I -~ - -
~~~~
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prob lems is enormous. In this section we will discuss recent literature only

for those problems which are closely related to P.

Research on multistage location problems ha. been limited. Geoffrlon

and Grave s ( l2~ described and tested an algorithm (or solving multistage

multicomeodity distribution system s using Benders ’ decomposition. Eliwin

and Cray 181 described and tested an algorithm for solving single stage

(I’ • 0) location problems and proposed , but did not test , an algorithm for

solving multistage problems . ~4,st of the papers in the literature have con-

centrated on th. single stage version of P for which I’ • 0. This has

been called the simp le (capacitated or ur...apacitated ) warehouse location

problem which we denote by P1. Some of the models which have been studied

impose added con figuration constraints on P1 which restrict the total

number , and different combinations of warehouses which can be opened . For

examp le , a constra~nt frequent ly used is:

— 
K (9)

is!

where K is an upper limit on the total number ~l warehouses which can be

ope ned. In the special case where f~ • 0 for is! and each warehouse is

uncapacitated , P1 with constraint ameended is called the K med . n

problem. Roth heuristic (141 and exac t methods 15 1 . (16J . ~2 lJ ,  have been

proposed for solving the K median problem.

Earlier attempts at solving the uncapacitat .d P1 concentrated upon

th. relaxation , P1’. of P1 where (7) is rep lac ed by:

O < y
~~

< 1 ii! (10)

(see 1 61, (71). Tb. basic idea was to solve P1 by iab.ddtng Pt ’ into an 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



-

implicit enumeration scheme. Since then Pt ’ has been called the weak linear

pro&ramstnx relaxation of P1. It is termed “weak” because there is another

l inear programeing relaxation of P1 which has proven to be muc h stronger than

P1 ’. To describe the latter , we add to problem P1 the constraints:

mm S i.d j Jy i icI ,$J . (11)

Let us denote by P1 ” the problem in which the constraints (11) are added to

Pt ‘
. For uncapacitated location problems Pt ” is called the strong linear

pro~rameing relaxation of P1. (Note that for uncapacitated location problems

mintS 1.
d
1
j • min~~ ,1~ — 1). P1” is stronger than P1 ’ in the sense that the

gap between the optimal values ot P1 and P1 ” is normally much smaller than

the gap between the optima l value s of P1 and P1 ’. Also , it is often the

case for uncapacitated location problems , that a solution to P1 ” will satisfy,

or a~~ost satisfy ( ‘ i. That is , after solving P1 ” a lmost all of the fixed

charge variables will be naturall y integer. However, even though optima l

solutions to P t ” tend to  be close approximations to an opt ima l solution for

P1 . researchers have attempted to avoid solving Pt ” directl y. because it

has an el’~ rmous number of constraints (there are mxn constraints of the t ype

(11)). Schrage ~20J , has proposed a method for solving linear programs which

handles constraints of the type (11) implicitl y, thereby reducing storage

requirement.. Still the time required to solve P1 ” by the simplex method

can be excessive and could cause difficulties in an imp licit enumeration scheme.

Instead of solving P1 ” directly, heuristic methods have been proposed

which find feasible solutions to the dual of P1 ” . To describe these epproaches

let us denote by X~~ a feasible , and by X~~ an optima l solution to problem P1.

_ _ _  -_ _ _ _ _ _  _ _ _



Let Z(X) represent th. objective function value for solution X. Also let

D be the dual problem to problem Fl ” . Then by duality theory we know that:

* * *Z(X~1
) Z (X

p1~ ) Z (X ~
) Z (X D

) (12)

where X.~ is an optimal and a feasible solution to D. Thus a feasible

solution to D provides a valid lower bound on the optima l objective func t ion

value of Pt . Subgradient (
~.1 and dua l ascent methods 13 1 , (91 have been used

to find good feasible solutions to D. In the case where Pt is uncapacitated

one can easi ly ~ompuLe a low cost primal solution to P1 after having found the

feasible solution to D. Furthe rmore it is often the case when P1 is

uncapacitated that the gap , Z(41) - Z(XD
). is very small or even zero,

which makes the additiona l work to get optima l solutions small. Thus the

relaxation P1 ” has been very effective in solving the simple uncapacitated

warehouse location problems .

Several al gorithms also exist for solving capacitated location problems.

Akin~- and Khumawala 11 . proposed and tested an imp licit en ~ eration algorithm

which uses P1 ’ as a relaxation . Lllvin and Cray (8) described and tested

a branch and bound al gorithm which uses duality properties of Pt and bounds

obtainable from the submodularity of the objective function (1) for fathoming.

Guignard and Spielberg (131 have generalized the dua l ascent method of Bilde-

Krarup (3) and Er lenkotter (9) to the capaci tared version of Pt. They use a

relaxation very s imilar to P1 ” which contains the constraints (11). They

solved some randomly generated problems and found that the zero gap phenomenon

* *between Z(Xp1) and Z(X
D) occurs le ss frequentl y with capacitat.d or mixed

problems , than it does with uncapacitated problems . Other relaxations besides

P1’ and P1” have also been used to solve P1. Geoffrion and McBride (Ill

H 
_ _ _ _  _ _ _
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have considered a location mode l for which P1 is a special case and have

used a Lagrangian relaxation combined with imp licit enumeration to solve it.

Recentl y Nauss (17) used a Lagrangian relaxation to solve P1 with excellent

computationa l results.

In the following sections we will describe an algorithm for solving P.

The general approach is similar to the one used in (8) to solve P1. We do

not solve a relaxation of P. Instead we make use of some lower bounds obtain-

able from the submodular property of Z. together with some othe r fathoming

rules , to enumerate exp licitly a subset of the solutions to P. The movement

in the search tree from one solution to another is facilitated by applying cost

operators (21) to P. This significantl y reduces the amount of effort required

to so lve P. since most researchers have found that the majority of the t ime

involved in solving capacttated location problems is spent solving transportation

subproblems. Eliwin and Cray (8) have tested and shown that in many cases ove r

9O~ of the time required to solve a test problem is spent solving transportation

subproblems. In the next section we discuss some lowe r bound s on the value of Z,

some of which are utilized in the al gorithm described in Section 5.

3. Ob jective Function Lover Bound,

Many of the lower bound properties which we pre sent here have been dis-

cussed in (2) and (10), in the context of the simple uncapaci ta ted location

problem. These lower bounds and their properties are also useful in solving

other kinds of mathematical programeing problems .

There are many properties which can be used to define submodular set

functions . For a discussion of them see (18). To define one such func t ion

let Z be a real valued function defined on the finite set of subsets of I.

L ’  _ _ _ _ _— -~~~ - — —---- - - - --- ~~~~~~~~~- —-
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For notationa l convenience we define :

• Z(A ..B) - Z(A) A 1 , B — I  (13 )

Then any of the following properti es can be used to define .i submodular

function :

(1) Z(A~~B) + Z(A 8) Z(A) + Z(B) (or all subsets A ,B- I.

(ii) .~z1
(A) .

~
Z
i
(B) V A — B  — I , iii (14)

( i i i)  Let ~B1 
be a partition of 8-A; then

Z(A) - Z(B) - ..Z (B - B ) A — B ~ .I. (15)
— 

k— i 
k

In most expositions property (t is taken to be the definition of submodularity,

and propert ies (t i  and (iii~ are shown to be equivalent. Details are omitted .

In the context of this pape r , 1(A) represents (1). The fact that Z(A)

i s submodular was proved in j 1~ ) . Note that in P. Z(ø) represents the value

ot the solution where all of the shipments ~‘r~ ginate from the factories. When

I’ — 0. as in Pt . one must be careful in defining Z(A) if A happens to

be infeasible set of warehouses. i.e. , when S~ 
.
~ 

— d . in this case we
icA $3

we Jefine a “dumey factory ” which is always available to service the demand

centers but at a high shipping cost. This makes Z(A’ large enough so that

the value of Z(A) for any infeasible A is at least as large as the value of

any feasible solution . The dusiny factory approach preserves the submodularity

of Z and also yields a different value of Z for solutions having different

degrees of infeasibility. As we will see later , this is helpful in decid ing

which warehouses to open when we are working with infeasible sets of warehouses.

Properties (14) and (15) can be interpreted as adding or subtracting ware-

houses from a given set A of open warehouses. For example property (14)
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says that the addition of warehouse I to  the set A decreases the tot .*~

.ost by .~c least as muc h as the addition of warehouse I to the set B when

A - ~~~. Thus f t  is similar to the “decreas ing returns to scale ” condition in

economics.

Properties (1.) and (15) can be used to characterize solutions to  P

and to  derive lowe r bounds on the value of any solution to  P. The algorithm

to be described in Section S searches for set s  I — I which have the following

t~~ ’ propert tes :

U )  .z~~
(T) 0 V I c I-I

(ii) .~.:~~(t— ~~~~~~~~ — 
.) V i C I

Sets T I w hi — h satis fy (i) and ( i i)  are such that the addit ion to  I or the

deletion from T o t a single facility does n-’ t cause Z to  decrease . Clear l y

any Jpttr.1 so ut~~ n t~~ P satisfies (I) and (ii). In a sense properties (I)

and (i i)  character ize  the set of all “l o c a l l y optimal ” solutions to P. The

gl obal ly optima l solution is the best locall y optima l s.~lutt on , which must be

found by a search process. One of the factors which make it hard to find the

globally opt ima l solution is that there are many l oca l l y optima l solutions which

have near~ v ‘pUma l ob jec t i ve  f u n c t i o n  values. Thus in any enumeration procedure .

a considerable amount of effort is normally required to eliminate these nearl y

optimal solutions from consideration . In a practical sense however , it may

be true that the nearly optima l solutions , say those within l’~ of optimality

-~av indeed be as val uable or “as optimal” to  a decision maker as a globall y

•~ptima l solut ion . Give n the inaccuracies in the cost data and other environ-

mental and polilical factors which must be taken into consideration , i t wou ld be

des irable to have not onl y an optimal solution to P. but in addition a list of

—.— - —- - -~~~— - -  - —-~~- . . -
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sol ut ions whi~ h ar e ne ar l y optimal. We w ill point out how tht~ may be ac-

complished using the algorithm of Section 5.

In the initializa t ion phase o f any location algorithm , two rules can

be app l ied in order to permanently open or close warehouses.

RULE 1. If ~.z1 (I - i ’H 3 for any i I. I then the warehouse

i will be open in some optimal solution to P.

To see this suppo se tha t I is an optima l set of warehouses and I I I. By

propert y (1.)

(I) — Z(I’- ~ j 
) — Z(I ) 

— 
.~2 . (I — ~i ) 0,

thus I ‘J i~ is also an optima l soluti on .

RUII 2. If .Z
1
(I ’  - . 0 for any I c I, where I is the set

o : warehouses opened by app l icat ion ot  RULE 1 . then warehouse I

will be closed in some optima l solution to  P1.

The just it ication for RUlE 2 is similar t o  that for RULE 1. We w ill show ,

in the next section how the testing of RULE 1 and RUlE 2 requires only

the appl icat ion of two cost operators for each warehouse . In many cases, as

w ill be seen in Section -
, RUlES I and 2 can be used to  f i x  open and c losed a

large portion of the warehouses in an optima l solution.

Another property o f submodular set functions which can be derived from

(I.) and (15 ) is the following : Let tA 1 A
~

i and 
~~ 1• ’ • ’

~~C~ 
be

~~:t:~~~~~
r
~~ ~

A

en 

I such tha: Q A~ f or eac h I a  1 t and some

Z (T ) Z (A ) - .~z (A-A Z ( A )  - ~.z (A-Q~~) (Ib)
kal Ak k k.1

for all subsets I satisfying I A I. The quantity on the right hand side

— —~~- - -  - —-“ - ~ - .  - - — - -  —- -—- —  - --“ — -— - --~~~— - - -—fl
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ot (15’ provides a valid lower bound on the value of Z(T), for any I . I.

Property (6) says when we use a mor e r e f i n e d  partiti on ot A - I, we get a

weaker lower bound . Suppose we let A • I. Then the most refined part it ion ot

I - T is clear ly yi
1~ ~i~~ j where c I — T and t — 1 —

Then ~or this partition (16) yields:

t

Z(T) Z(I) - ~ ~.Z1 (I - ( 17 )
k—i k

Among the ~1ass of lower bounds (15) . l~~ i~ the weakest. N .tice tha t o n e

Rule I has been app l ied all of the terms on the right hand side of (17) have

been calculated . Thus (17) can be applied at any time after Rule 1 has been

tested without any extra computational effort. A stronger lower bound than (17)

could be -oht .~ined with some added computational etfort by part itioning I into

sets , Ak . ot  s i z e  two and calculatin g .
~
.ZA 

(I - Ak ’ . We have not yet tested
k

this idea .

Another fathoming device which provides an upper bound on the maximum

number .‘f warehouses in an optima l solution t’~ P can be obtained as follows:

Let t— ii - i~~ . Let 1
k
1
’”’

~~
k
~
’ k

i 
5 1 - I , be a nondecreasing ordering

of the fixed char ge s not in I . Define

*Dv — .~z u — .j - f
1
. j C I — 1 (18)

i i i i 
I I

and let DV ... . .DV be nonincreasing ordering of the DV . (Note that

DV~ — 
0.) The quantity -Dy 1 . represen t. the smallest possible incremental

J i
savings on the total shipping cost when warehouse is opened. Let ZU be

any upper bound on the optima l objective function value for P. Then an uppe r

*
b~ un~ :~ 

the number of warehouses in an optimal solution to P (containing I

is 1 ’ .k where .

•
-

~ 

_ ____________________
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* * * *k t-k k +1 t-k -l
+ Z f + ~DV j _.Z

u
_ Z(1) - : 14

r t
k ~ 1DY (l9

4.ci - 
t . l 

k
L sal 1s 4.~ I ~— l 4. s— I i s

Note that the first two terms on t rie right hand side c i  (l9. give the smallest

*
possible shipping cost, the next term is the sma l lest sum of k * 1 fixed

charge s, and the last term is the smallest possible cost ot c losing down

*t- (k • I) warehouses. Therefore the right hand side ot (19) ii a lower bound

on the vai.~e’ of an optima l solution to P containing ~~~ + k • 1 warehouses.

I: this lowe r bound exceeds 2 then any opttma l solution will contain at most

I , 
* open warehouses.

In the algorith, of Section 5 we use a. fathomiog devices bounds obtained

from (l’~ on the value of an optima l solution , and bounds obtained from (19) on

the number of warehouses in an optima l solut ion.

.. lice of Cost Operators to 5elve Proh~ e~g.~~~

Given the choice of a subse t I . I. problem P becomes an ordinary

transshipment problem . Rather than resolvin g th is problem each time I changes.

we use th. operator theory ot parametri c progranesing 122 ! to change th. problem

and derive the new optima l so ution sirult aneou slv.

we shall say that ce1 (i .~~) has been fixed out of the basis when a ce l l

~ost operator has been app lied to the problem and its solution so that the

cost c~~ has been driven to 411, where M is sc large that x
11 

— 0 in

any optimal solution to the new problem .

We also say tha t cell (t,j) has been fixed in the basis when a cell

cost operator has been app lied to the problem and its solution so that the

cost has been drive n to •M, where M is so large that x
~1 

a Min (S
1
.d

1
)

in any optima l solution to the new problem .

——.-

~ 

~~~- -—--~~~---~~~~~~ . ----- - — — —- - — —~~-— -~ -- ---- -~~ ---- -_~
__ _

~~
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FIgure 1 shows an example of a 2’3~’. multistage location problea’

Row s 1 and 2 correspond to the factories , row s 3 , ~~~, and 5 to the warehouses ,

and row ~ represents the dumny factory . Co luams ~~~, ~ and 3 correspond to the

warehouses , co lumn s ~ through 8 t o  the demand centers , and coluw 9 is a slack —
column . Rows I and 2 contain the cos ts  of shipping from the factories to the

warehouses and from the factories direct ly to the demand centers. Cells (3.1),

(..,2). and (S ,3) contain the fixed charge of the corresponding warehouse,

di~~ided by its capacit y . In any solution to P. these cell s will contain the

unused warehouse ~apacity. Cells (3.2), (3,3), -.,l). (4,3), (5 ,1) and (5 ,2)

cannot be used because of their large costs; in effect these arcs have been

removed from the problem . The cells in rows 3 through 5, and columns 4 through

8. contain the costs of  shipping fror~ each of the warehouses to each of the

demand centers p I.~ the proportional f ixed charges.  Notice that some of the

cells itt duim~y f a c t o r y  row 6 and slack column 9 contain two costs. This can

be exp lained in the following manner . To obtain the solution where :

y • -) set c — -M and c — -M
in m ,i-q

y — 1  set c — M  and c
i in m .i-q

(in Figure 1, m — 6. n — 8. q — 2 .  and I ~~~~~~~~~

To see this consider the problem shown in Figure 2. 3y solving the

transportation problem in Figure 2 we would obtain an optimal solution to P

when T • ~2 ,3” , i.e ., when warehouse I is closed and warehouses 2 and 3 are

ope n. ~~t tce that cell (3.8) has a cost of -Il, thus in the optima l solution

*38 — S3. 
which has the effect of closing down warehouse 1. Cell (6,1) has

a cost of -11 which causes a l l of the demand in column i to be satisfied by

the dt~~ v factory i.e., x61 — S3
. Thus settin g c38 • -11 and C

61 
a -M
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e r t e c t i v e l v  c loses  down warehouse 1. On the other hand for warehouse 2.

• M and c a M , so that x , • x • 0. This causes the demand in
b.. ..8 62

column 2 to be satisfied from row s 1 , 2 , or 4. The shipments from rows 1 and 2

repr esent units being shipped from factories 1 and 2 to warehouse 2. The

shipment tro-t row .. in coLumn 2 represents the unused warehouse capacity, and

it is charged at the proportiona l f ixed charge ra te .  Notice that if cell (4 ,2 )

contains * 4 2  
units then exactl y S . - x ,2 units can be used to ship from

warehouse 2 to the demand centers. This is exactl y the amount which is made

available to warehouse 2 from the factories. Thus the conservation of flow

equatto ns ( S t  have been satisfied. because a proportional amount of the fixed

charge is assigned to both the used and unused parts of the warehouse capacity.

the tot .i l t ixed charge ~s covered in any feasible solution.

Figure 5 conta ins an optima l solution to the 2 4’S examp les solved in

Sec tion ~‘. In Figure 5, 1 • ~ l ,3 : so that warehouses 1 and 3 are opened , and -

warehouses 2 , ‘
, and S are closed . Factory 1 is not used at all so that x l 10 —

F.ictorv 2 ships 21 units to warehouse 1 , 4) un its t warehouse 3, and 16 units dir-

ectl y to demand center 1. Warehouse 1 ships all 21 of the units it receive d from

Fac tory 2 to demand center 3. The remaining unused 4 units of capacity at ware-

house 1 are in cell (3 ,1) and are charged at the proportiona l fixed charge rate.

All of the flow for warehouses 2, , and 5 is in the last column, and their demand

is satisfied entirely by the d u y  factory. Warehouse 3 is used to capacity

shipping 22 units to demand center 2, and 18 units to demand center 4. In this

example each of the demand centers is supplied from a single warehouse. This is

not the case in general.

The idea behind the cost operator approac h to solving P(T) is to open

the warehouses in I and close those in I - I by fixing in or out of the

_ _ 
_ _ _ _ _ _



basis each o~ the c e l l s  (m .l) through (m ,L .i and (q#l , n~ thr ough q+1 , n ).

For example the problem PU). in whic h al l of the warehouses are open , can be

obta ined by sol ving the transportation problem shown in Figure 3. Then to

app ly Rule in Section 3 we use two cost operators (or each i C I. For

ex amp le we would calculate ..Z
3
(I - [3)) — Z(I) - Z(I ‘~3)) by f ixing in

cells (3,8) and (6,1) . Doing this would yield a solution to the problem

shown in Figure 2 , and permits the evaluation of  Rule 1. In general , the

addition ot  a warehouse to  a given set or the deletion of a warehouse from a

given sct requ i res the fixing in or Out of two cells. The amount of work needed

to fix two cells in or out using cost operators is much less than the compu-

tationa l effort of sol ving a transshipment problem from scratch. Since the

branch and bound search al gorithm to be described in the next section require s

t~~~ s.- l u t t ’ n of  tr4nsshipment problems f o r  many sets I, the total computational

effor t saved by the fixing itt and fixing out procedurt is very large .

Also we should mention that in the case where I ’ • 0, as in sing le

stage proble—s . onl y one cost operator is needed to open or close a warehouse .

In the sing le stage formulation column s 1 through t and rc’vs 1 through 2 are

absent. Thus in order to fix in or out warehouse i we need on ly apply a

cost operator t~ c e l l  (i .n).

S. The Co,t Operator A1&oritha.

— To describe the cost operator branch and bound algorithm we use the fol-

low ing no ta t ion :

• leve l of the search tree

Q • set of open warehouses

List (t) • list of warehouses which may be opened on leve l ~
.

___  
____
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• current upper bound

X • current best solution.

We begin by setting ~ a 1 , Q • 0 and • Z(0) which is the (high )

cost of supp ly ing all demands from the factories directl y. Then Rule 1 (see

*
Section 3) is applied and we let Q • I . Then for each i C I-Q we apply

the lower bound test (1’ ) by setting I - Q .. [I). and checking to see whether

Z(I) - — ,2 ~I — ck ;) . (20)
— 

kCI-T 
k

If the right hand side of (20) (which i s a  lower bound on the value of

Z(Q ‘- l })) exceeds Z1’, than warehouse I can be pe rmanen t ly closed. For

eac h i (or which (2~J holds true we app ly cost operators to calculate ~~ Z
1

(Q).

If .:.Z1
(Q) 0 then we permanently clos.t~ wareh ouse i. Then we let List(1) be

the set of all I such that ,.1
1
(Q) < ) .  (We place the warehouses in List (1)

in order of non-~ ocreaaing objective function va l ues. ) Next we remove the

last warehou se, I, from List (I) and rep lace Q by Q [i 1 . We let Z’~ •

update X. If List (1) is empty then we stop . Otherwise we calculate k* as in

19). If k — I then we stop. Otherwise we rep lace ~. b;’ I • ~ and

cont inue t o  the next level. At each leve l after the first, we perform the lower

bound test (20) for each warehouse . I, in List (4.-l ) by letting I • Q -

~- c.i’j .
I f warehouse i passes the test (20) we calculate 2iZ

1
(Q). Again we let

List (~~ be the set of warehouses such that .Zi
(Q) ~ 0 in nonincreasing order .

If List (I) is not empty we remove I , the last element of List (4.); let

- Z(Q r i ’) and update X. If LIst (4.) is now empty we backtrac k by re-

placing ~. by 4.-I , removing the last warehouse paced in Q and then continuing

* *as before . Otherwise vs calculate Ii as in (19). 11 4. ~‘ k vs brac ktrack

_ _ _ _ _ _
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as just described . Otherwise we replace t by L+1 ; replace Q by Q J ~i},

and continue as before. The algorithm terminates when List (1) has been emptied .

Now we formally state the £.2I.L, opera tor multi-st age location-allocattqn

algorithm

Step (1). (Initialization). Set 4. — 1; ~
U 

Z(G). Apply Rule 1. Let Q — 1*.

For each I C I-Q app ly t est (20), let ting I • Q ~
. ~i). For each I

which satisfies (20) calculate .
~
Z
i
(Q ). Order those I such tha t

0 in non in c reas in g  orde r and p lace them in List (1). If

List (1) empty go to Step (5). Otherwise let k be the last warehouse

in List (I). Let • Z(Q ~. (k)); update X. Remove warehouse k from

List (I). If List (1) is empty go to Step (5). Otherwise go to Step (2).

* * *Step (2). (Bound by k ) .  Calculate Ii as in (19). If 4. It go to Step (4).

Otherwise replace 4. by 4.*i; rep lace Q by Q - [It) and go to

Step (3).

Step (3). (Forward branching ). For each warehouse i in List (4.- l) appl y

test (20) letting I — Q j i .  For each i which satisfies (20)

calculate .
~
Zi (Q). Lis t those I such that LZ

1
(Q) 0 in non-in-

creasing order and p lace them in List (~~~) ,  It List (4.) is empty go

to Step (4). Otherwise let k be the last warehouse in List (4.).

Let • Z(Q ... [It )); update X. Remove warehouse k from List (4.).

If List (4.) is empty go to Step (4). OtherwIse go to Step (2).

Step (4). (Backtracking). Replace 4. by 4.-I . Remove from Q the last

warehouse p laced in Q. If 4. • I and List (1) contains oni, one ware-

house go to Step (5). Otherwise let It be th. last warehouse in List (4.).

I

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - , ---~~~~~~~ - - -- -- — — --~~~~~~~ —~~~~~~~~~~ - -
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Remove k from List (4.). If List (I. )  empty go to Step (. . ).  Otherwise

replace Q by Q U ~k); rep lace 4. by L.l and go to Step (3).

Step (5). (Te rmination ) Stop . The current solution X . is opt imal.

Notice that each t ime Step (3~ is performed a new list of feasible

solutions to P is available. Many time s these solutions have nearly optimal

ob jective f u n c t i o n  val es and thus they mig ht be worthwhile to save .

*A fter calculating I . the cost operator algorithm proceeds to open , one

at a time , those warehouses whi~ h cause the largest decrease in the objective

function value . This is continued until at leve l ~~~, no furthe r decrea*e in

the ob’ective function va lue is possible (i.e. List (4.) is empty). Then we move -~ -

to the bac ktracking Step t.~~. The best feasible solution obtained by the cost

operator algorithm before the Urst backtracking is called the greedy solution.

~se denote by the ob~ect ive function va lue of the greedy solution . In (18),

a worst case bound on f’ was derived ~or submodular set functions which is ,

- 
~~ ~~~~~~~~~ 

4 k .  1 (21)
Z ( O ) -  Z ~I . It

* *where 2 is the optima l objective function value arid It is obtained from (19).

In practice however, the actual percentage error obtained by the greedy solution is

much smaller than the worst case bound . In Section 7 we will see that in most

ca..s rh. greedy solution value is within .5 percent of optimality .

Finall y we should point out that it wou ld be trivial to “reverse” the

cost operator al gorithm so that instead of starting with all of the warehouses

c losed , and opening them one at a time, we could start with all of the warehouses

open and close them one at a time . This could be done by defining Z’(T) • Z(I-T) -

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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in (1). Z’(T) is also submodular , and results from Section 3 would remain

valid for 2’. The reverse algorithm might be better suited to handle problems

where an optima l number of warehouses tends to be close to the total number

of potential warehouse sites.

6. Example.

Figure 4 show s the cost tableau for a 2’4 5  multistage location

problem. Fixed charges for warehouses 1-5 are : 150, 217. 200 , 264, and 140.

For an explanation of how the costs in the tableau are calculated , see Figure 1

and Section .. The diagram in Figure 6 is a 5-dimensiona l hypercube whose nodes

represent all of the possible open warehouse combinations. The search tree will

be a subgrap h of this hypercube . The number above each node is the value of

an op t ima l solution t o  P when only those warehouses marked in circle of the

node are open. The number in the parenthesis above a node is the total cost

lower bound for that node obtained by calculating (20).

We illustrate the steps of the algorithm applied to this example.

Calc ulations

(I) Set 4.1. Q”4 . 2 ’ — 2(G) — 2~~~07 , App lying Rule 1 we gct

- f l y )  a 2303 - 2201 • 102 ; ..Z,(t - [2~ ) — 217 ; .Z
3
(I - 3 ” ) a 316;

- [ .~~~
) • l~’2; .~25

(I - j S ’ ) • 1-SO . I — Q — •. For each

~ [l,2.3,’..5~ apply te st (20). None of the lover bounds exceeds the

current upper bound . (See the numbers in parenthesis in Figure 6.) Next

calc ulate .~Z1
(ø ) • 1880 - 2107 — -227 ;  1Z

2
(G) • -94; AZ

3
(O) • -123;

,~Z, (G) • -136 ; .~2~~~( O)  • -105. Let List (I) • [2 ,5,3,4). Let Q — (1);

a 1880; 1 — 2; go to Step (2).

LI -:
~ - — .~~~ -~~
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~.Es2 Calcula tions

) .~~ ) Z(1 • 23)’.; f
1 
• 1002; the fixed charge ordering is f

5 
— 140,

Ic!
• ~~0, I • .00 . f

2 
a 217 , f

3 
— 2b4. The DV ordering is DV

2 
• 0 ,

U *
• -i . ~w • 38, Dy

1 
• ~.2.  Dy

3 
— 38. Z • 1880. Setting k — 2

-v 4et tr~~ ~~9) 1)32 • 290 • 38 1880 1332 + ‘.90 + 0.

Sinc e “ • 1 ‘- 2 , let 4. • 2; let Q a [1); go to Step (3).

F.’r c.. . ‘~ C 2 . 5 ,..,) apply test (20) setting I — 1) [i}. (See

F igure 6. For each I C [2,5,4,3j calculate 2.Z1
([1*). .~Z3

([l)) — 118.

• 32 , ,.Z
5
(~~L~~) • 22 , .~Z2(t l )  s — i S .  Let 2u • 1762.

LIst (2 • ~2 .  Go to Step (4).

(2) Setting k • 2 we get from (19) 1332 290 + 38 1762 1332 4 490 + 0.

Since ~ • 2 2 go to Step (. .) .

(.. ) Let ‘ • 1. Remove ~l) from Q (now Q • 0). Let It • 4. Let

List (1 ) • [2.5 ,3). Let Q • ~~~~ Let 4. • 2; go to Step (3).

(3) For each i c 2 ,5,3 ) app ly test (2’ setting I — [4) ~~~ All

sol ut ions are fathomed (see jnibers in parenthesis ‘.n Figure 6).

List (2) a 0. Go to Step (4).

(3~ Let 4. • 1. Remove [4~ from Q (now Q — 0). Let It — 3. Let

List (1) a [2.5). Let Q a [i). Let 4. — 2. Go to Step (3).

(3) For each I c 2.5} app ly test (20) setting I • [3) [i). All

sol utions are fathomed (see Figure 6). List (2) — 0. Co to Step (4).

( ‘ . )  Let 4. • 1. Remove [3) from Q. (now Q • 0). Let It • 5. Let List (1) a

[i). Let Q — 51 . Let 4. • 2; Go to Step (3).

I . r - -  _ _ _ _ _ _  -
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Calculations

(3) For I c r 2~ apply test (20) setting I a ‘5 ’ ~i). The solution

is fathomed (see Figure 6). List (2 • 0. Go to Step (4).

(.. ) Let 4 a 1. Go to Step (5) .

(5) Stop. Z’
~ — 1762 is optima l for warehouses ~~~~~ An opt imal solution

i~ shown in Figure 5.

An opt ima l solution to  the example is given in Figure 5 when warehouses

1 and 3 are opened. The greedy solution is optimal and is obtained at the circ led

vertex ~~~~~ in Figure 6~~ The upper bound on an optima l number of warehouses,

*
It • 2 , was obtained in the first applicati on of Step (2) and thus none of

leve l three warehouse combinations were examined. In total , 16 of the vertices

in Figure ~ were generated. Six of the vertices on leve l 2 were fathomed using

(20). The total number of transportation p ivots required to solve the sample

problem was 85.

Computational Results.

The cost operator al gorithm of Section 5 was coded in FORTRAN IV and

the runs were made on a DEC 20 time sharing system . Many of the problems were

r .n at different time s during the day and thus the cxecution times may vary up

to ten or fifteen percent depending ‘ipo n the comput ing load of the machine.

The maximum time a l l ot e d  for solving any problem was 500 seconds.

Al l  of the problems are deri ved fro. the kuehn and Hamburger data which

was original ly presented in [l4J . Problem sets I through VII are taken from

Akinc and )0sumawala 11 , and VIII and IX are take n from Eliwein and Gray [81 .

-~~~~~~~
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These are single stage problems of the type P1. Problem sets X through XV

are multistage problems which are solved here for the first time .

Since it is necessary to read several articles to determine how the

problems I through VII  were originally created , we w i l l  describe them here .

The Kuehn and Hamburger data represents a multistage system with 3 factorie i ,

2~. potential warehouse sites , and 50 demand centers located in the continental

United States. Problems I throug h IV were formed by considering onl y the first

15 potential warehouse sites (I.e., Atl anta , Boston , through New Orlean s as in

(I-.) ~~ . To obta~ r~ the shipping costs ~~ from the se sites to the 50 demand

centers mult ipl y each distance ~v $.J25 mtle unit cost , wh ich is the bulk

shippin g rate. The sixteenth warehouse is actuall y the factory at Indianapolis.

~. used the dista r~ce from Indianapolis to  the 50 demand centers multip l ied by

S .i12~ — l i e  -~oit as its shipptng c o s t .  The factory at Indianapolis has the

s.ime capacity .is the .‘ther warehouses and it nas a zero fixed charge . The

p roble~.s V through VII are set up in a similar fashion except that all 23

potenti .~1 warehouse sites are ~sed . Problems X through XV are multistage

pr- ’hle~ns which are also derived from the Kuehn and Hamburger data. All three

ta~ t’rv sites were used. The factories have capacities of 30,’)OO or 35 ,000

-~ntt s. To derive the shipping costs , we multip l ied the distances from each

fact .-’ry to each warehouse by S.O~ 2~ trile unit cost , and from each factory to

each demand center by .03?5/mile unit cost. To get the shipping costs from the

warehouses to the demand centers , we multip lied the distance by $.0250/mile .

Table 1 contains a description of all of the test problems. Table 2

contains the computationa l results for the sing le stage problems and Table 3 for

the multistage problems . The percent error formula used to evaluat, the greedy

solution was , 
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C *2 2 100.
z

C *where Z is the greedy va l ue and Z is the opt i~ ol value . Also included

in Table 2 are the execution time s for the same problem s solved in I 1 J and [171 .

For test purposes the problem sets I through XV .‘re very interesting be-

cause they contain problems with a wide range of dif ficulty.

The res~.its tor the greedy solutto r. were startling. The largest percent

err ’r inc -~rrt~J woe. 3. ’ (see Table 2 . IX~~. however in general the percent error

was less than .5 percent and the greed y solution was an optimal solution in 32

out of 51 probl ems .

Anothe r interesting st.i~ istf~. is the number of  vertices required to  find

the optimal so l. tio n as compared to  the tot .i l number ~f vert ices searched. An

optima l solution is us~ allv located very ear ly in the search process and most

ot the er f o rt is typic all y spent veri fying its op tiLal ity . This experience is

ci -rila r to that tound in solving othe r kind s of intege r progranmting problems .

The Set I .  which represents the warehouses fixed open in the initializa-

t ion phase ot  the cost operator al gor ithm , of ten accounts for as much as S5~.

of the total number of open warehouses in an optima l soluti on. T~ e uncapacitated

pr oblems (sets IV . VII. X I I , XV) were ver y easy to  solve as expected. As far

as pr oblem difficulty is concerned , those problems for which an optima l number

of warehouses is approximately one half of the total number of po~~-n tia l ware-

house sites are usually the most difficult. This is probabl y due to the fact

that the number of possible warehouse combinations , when 4 Is

even or ~ when 4. is odd , is the maximum of the binomial coefficients “

I 
—- -- - - ~~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~ - -



The CPC time s ;uuted in Tables 2 were obtained by three di ffe rent sets of

~uth~ rs and are ~1 t t t i ~~~lt t o  compare due to the differences in computers and in

pr~-’gra~~ ing ctti. i ency. As tar as ma chine speeds is concerned , the IBM 370, 168

ts the fastest . f - -h ow-ed by the IBM 370- lbS and then by the DEC-20 .  However .

actua l speed r a t i o  f a c t o r s  fo r  pairs ‘f  t~~e computing machines are v i rtuall y

impossible t o  find . It seems fair to state that the performance of the three

codes shown in the tabl i  arc uot s ign i f icant ly  di f ferent ; we may say they

represent t~~ t- -
~~~ .te ot  t he art  o: o mpu t at  1 ~~ resu l t s  or. these problems .

Table 3 exh~ b t t s  c om put at iona l r es u l ts  on mul t i stage problems having

3 factories, 2-. warehouses , and 50 demand centers. As can be noted , the computa-

t~~or ti- ~es are r elatf .-e ’. s .ahl and exhib it a re .itive l y small variance for

~r. te,~e’r pro~ ramin~ pr oh ems . We again found the performance of the greedy

sal .~ ion t o  ~‘e even be t t e r  than f o r  the sing le stage problems . This is perhaps

due t o  the fac t that  the f a c t o r i e s  have a large total capacity. and they can

ship to . .us to mne rs d i r e c t l y if ~‘any of the warehouses are closed down .

~~~. Conciusion .~~

We have presented a cost oper ator a gorithm for solving multistage loca-

tion-a llo cation pr ohiem s which doe s not employ problem relaxations as do the

other c-; rr ent iv best approaches 1 . 17~ . Computational results indicate that

this method is competitive with the others. The greedy solutions obtained by

the method are usuall y extreme ly close to or are optimal. Also , because the

method computes ~manv near optima l solutions as it solves the problem, these near

-‘pt ima l ,olutions can be saved and printed out for use by a manager if he desires.

Computat ional results on the solution of multistage location problems are presented

here , but we have been unable to find other published results on such problems for

comparison. The performance of our method on these problems, is encouraging .

We wish to thank Professor l3mit Akinc for supplying the Xuehn-Namburger

data used in this paper .
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Table 1

test Problems

Problem Set C Problems (q.4. r) 
_____ 

A
1 

S~ 
_____________

7 ,S’~o;l2 ,500 /
I -. -)‘lb’SO 58268 - 5000 17 ,500/25.000/

I I  1 Os lb ’50 58268 - 10000 17 ,530

7,500/12 ,500/
III -. 0’l6~ 50 58268 - 15000 17 ,500/25,000/

7 ,500/ 12 ,500/iv * i’hb’SO 58268 - 58628 17 ,500/25,000/

7 .500/12,500/v • 0’25’50 58268 - 5000 17 ,500/25,000/

7,500/12 ,500/VI .. 0’25’50 58268 - 15000 17 ,500/25 ,000/

7 , 503/12 ,500/VII .. 0’25’So 58268 - 58628 17 ,c13/2’,,OOO,

* 1000 15 ,000VIII 1 0’whS ’~.5 37.....3 - 
5000) 40,000:

* 1500 22 ,500
IX 1 ) ‘~~~ ~~~‘ ‘ ~~~~ 

— 7~ 00d b0,000j

- 500/12 ,500/
X .. 3’ .’ S O  ~~~~ 3 500u 5000 17 .500/25,000/

7 ,500~ 12 ,SOOixi .. 3’2.’50 58268 35000 15000 17 ,500/25,000/

7,500/12.530/
XII * 3’24’50 58268 35000 58628 17 ,500/25,000/

7,500/12 ,500
XIII .. 3’2 .o ’SO 58268 30000 5000 17 ,500/25 ,000 /

7 ,500/12, 500/xiv 3’2*’50 58268 30000 15000 17 .500/25,000/

XV ,E 3’24’50 58268 30000 58268

* Numbers in the brackets ~ correspond to ranges.

I 
_
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Table 3

Computational Results

• vertices Total Optima l Tota l  CPU
Problem error to 0 

* 
e TLme

Set Greedy Optima l Vertices ~~~~ Warehouses Pivots (Dec-20)

X- l 0 56 1~~3 11 15 24 1’. 11.88
X— 2 .30 514 858 8 13 12287 61.39
X-3 .2’. 2 77 680 6 11 7411 39.15
X-4 1.6 492 3627 1 7 39084 197 .24
X I-t 0 54 99 9 13 1708 8.51
XI-2 0 71 521 5 8 7895 36.09
XI-) 3 62 184 5 8 2830 13.69

3 90 837 2 6 14)23 66.88
Ui-I .02 76 9 12 2874 17.69
XII-2 0 69 352 5 8 6885 34.43
X I1-3 0 75 452 4 8 8431 41.26
XII-4 0 81 499 3 6 10383 50.1
XI1I-1 0 56 1.5 11 14 2412 12.16
X I t I - 2  .30 51’. 858 8 13 12144 62.97
XI1i- 3 .2’. 2’7 680 11 7840 45.44
XIII-- . 1 7 -~92 3~ 27 7 41054 246.83
XIV- 1 0 54 100 9 13 2060 12.85
XIV- 0 ~h 537 5 8 8.80 44.7
XIV- ) a’) 62 184 5 8 3152 19.9
XIV~ 4 0 90 838 2 6 14463 75.7 a

XV- 1 .3 1 73 84 9 12 3627 23.8
XV-2 0 69 363 5 8 7813 44,3
XV-) 0 •S• -. 8 918 49.8
XV-. 0 81 ‘.99 2 6 11234 60.53
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